Clustering the Web: Comparing Clustering Methods in Swedish

Clustering — automatically sorting — web search results has been the focus of much attention but is by no means a solved problem, and there is little previous work in Swedish.

This thesis studies the performance of three clustering algorithms — k-means, agglomerative hierarchical clustering, and bisecting k-means — on a total of 32 corpora, as well as whether clustering web search previews, called snippets, instead of full texts can achieve reasonably decent results.

Four internal evaluation metrics are used to assess the data. Results indicate that k-means performs worse than the other two algorithms, and that snippets may be good enough to use in an actual product, although there is ample opportunity for further research on both issues; however, results are inconclusive regarding bisecting k-means vis-à-vis agglomerative hierarchical clustering.

Stop word and stemmer usage results are not significant, and appear to not affect the clustering by any considerable magnitude.
Source: Linköping University
Author: Hinz, Joel

Download Project

Personalized Mobile Information Retrieval System

Ontology Supported Personalized Search for Mobile Devices

>> More Papers to Download on Personalized Web Search

Similar Projects:

For Free CSE/IT Project Downloads:

Enter your email address:
( Its Free 100% )

Leave a Comment

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>